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KATSUHISA MURAKAWA 

Mechanical Engineering Department, Faculty of Engineering, 
University of Yamaguchi, Tokiwadai, Ube City, Yamaguchiken, Japan 

(Received 15 October 1959, and in revised form 21 September 1960) 

Abstract-The velocity distribution, the pressure drop, and the length of the hydrodynamic entry 
length of the pipes with annular space (annulus) are found theoretically by the hydrodynamics, Bessel 
functions and the finite Hankel transform, and the examples of numerical calculations are also shown. 

The theoretical researches of laminar heat transfer of double pipes in hydrodynamic entry length and 
in thermal entry length are accomplished. In the theoretical solutions, non-linear Volterra’s integral 
equation and Gauss’ method with a high accuracy in the method of numerical integration, are used and 
it is described that theoretical solutions coincide with experiments very well. Moreover, theoretical 
calculations of length of hydrodynamic entry region and thermal entry region of double pipes are 

described. 

R&&---La theorie hydrodynamique permet, 21 l’aide des fonctions de Bessel et de la transformation 
de Hankel, le calcul de la distribution des vitesses, la chute de pression et la longueur d’entr& hydro- 
dynamique des conduites annulaires (tubes concentriques). Des exemples numkriques sont donnks. 

Des recherches theoriques sont faites sur la transmission de chaleur laminaire le long des distances 
d’entrkes hydrodynamique et thermique des conduites doubles. Pour obtenir des solutions thtoriques, 
on a recours d l’tquation intCgrale non-1inCaire de Volterra et B la mkthode de Gauss avec intkgrations 
numtriques t&s pr6cises. Les rksultats theoriques coincident t&s bien avec les rksultats exp&imen- 
taux. De plus, les calculs thCoriques des longueurs d’entrkes hydrodynamique et thermique des tubes 

doubles sont d6crits. 

Zusammenfassung-Mit Hilfe von Gleichungen der Hydrodynamik, von Bessel-Funktionen und der 
endlichen Hankeltransformation werden Geschwindigkeitsverteilung, Druckabfall und Liinge des 
hydrodynamischen Anlaufs bei Rohren mit ringfiirmigem Querschnitt (Ringraum) theoretisch 
bestimmt und Beispiele der numerischen Berechnung angegeben. Die theoretische Erforschung der 
hydrodynamischen und thermischen Anlaufstreckebei laminarem Wlrmeiibergang in Doppelrohren 
wird vervollstgndigt. Die theoretischen LGsungen beruhen auf der nichtlinearen Volterra-Integral- 
gleichung und der Gauss-Methode mit ihrer hohen Genauigkeit fiir die numerische Integration und 
zeigen sehr gute f_)bereinstimmung mit den Versuchen. Weiterhin sind fiir Doppelrohre theoretische 

Berechnungen der LInge des hydrodynamischen und thermischen Anlaufbereichs beschrieben. 

AHHoTasHsI-TeopeTMsecKH MeTO;laMH I-If~po~KHaMntilI, I$yHKIQIeii Beccann M ~cone~moro 
npeo6pa30samm XanKenrl natixeub1 pacnpegenenne cHopocTefi, naaenne zasneH5m M Anmla 
rIffipO~HHaMWIeCKOr0 BXOJJHOrO y%lCTKa TpyG C KOJIbUeBbIM 3a3OpOM. npIIBeAeHb1 Tawfie 

IIpMMepbIWCJIOBbIX paCq@TOB. 

BbIIIOJIHeHbI TeopeTwxecKxfe Hccne~oBaH~R TeIIJIOO&leHa B ZIaMHHapHOM IIOTOKe Kit 

rsfgponwHahwsecKom ~1 TepnwsecKoM BX~~H~IX ysacTKaX Tpy6 c KonbqeBbLv aaaopo*I. II 

TeOpeTHqeCKIIX IICCJIe~OBaHHFIX RCIIOJIb3OBaJIHCb HeJIMHetiHbIe ElHTerpaJIbHbIe ypaBHeIIWi 

BonbTeppa M MeTOg rayCCa.nOCJIeAHHfi IIpMMeHJIJICH C BbICOKOfi TOYHOCTbIO I7pEI YHCJIeHHOM 

IIHTerpMpOBBHHH. TeOpeTHYeCKMe peUIeHLlR XOpOIIIO COrJIaCyIOTCfl C 3KCIIepHMeHTaJIbHbIMIf 

XaHHbIMII. OnncaKn TeopeTwecKne pac+STbI ~ncr~ r~r~po~~HaMw4ecKoro A TepwwecKoro 

BXOAHbIX yYaCTKOB Tpy6 C KOJIbIIeBbIM 3a3OpOM. 

a, 
CT, 
CZ, 

NOTATION 

thermal diffusivity (cm/set) ; 
radial velocity (cm/set) ; 
axial velocity (cm/set); 

D, = 2r,, inner diameter of outer pipe (cm); 
D1 = 21.,, outer diameter of inner pipe (cm); 

F,(r), inlet velocity of entry length 
(cm/set) ; 
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K(r)> velocity of steady flow fully 
developed in the end of entry 
length (cm/set); 

foe+ dimensionless velocity in the inlet ; 

z? 

dimensionless velocity in the exit; 
02, dimensionless temperature distri- 

bution of the surface of inner pipe; 
J 
J 

Bessel function ; 
heating length (cm) ; 

Lv, length of hydrodynamic or velocity 
entry length (cm) ; 

LT, thermal entry length (cm) ; 
Nu = aI. (D, - Dl)/X,, 

Nusselt number; 
PO, inlet pressure (kg/cm2); 
P, pressure (kg/cm2) ; 
Pr, v/a : Prandtl number ; 
Re = + . (D, - 03/v, 

Reynolds number; 
r, radial co-ordinate; 
rl, outer radius of inner pipe (cm) ; 
r2, inner radius of outer pipe (cm); 
t = (T - ~O)l(~Wlrn - ~tim), 

dimensionless temperature distri- 

parameter; 
thermal conductivity (kcal/m-h 
“C) ; 
variable. 

1. INTRODUCTION 

IN industrial heat exchangers and atomic 
reactors, there are many cases where heat transfer 
begins immediately at the entrance of double 
pipes, and therefore research of heat transfer 
in double pipes, in hydrodynamic entry length 
and in thermal entry length, is necessary, but 
at the moment there is little being done. 

In the theoretical analysis of heat transfer 
of the entry length in the pipes with annular 
space, the velocity distribution, the pressure 
drop, and the hydrodynamic entry length are 
necessary factors, and therefore, the author 
determines them theoretically by hydrodynamics, 
Bessel functions and the finite Hankel trans- 
forms, under the given conditions of wall sur- 
face of the inner pipe and outer pipe and the 
inlet and outlet; examples of numerical calcula- 
tions are also shown. 

bution; 
mean temperature of the surface 
of inner pipe wall (“C) ; 
mean temperature of the surface 
of the outer pipe wall (“C); 
fluid temperature (“C) ; 
inlet temperature of fluid (“C) ; 
dimensionless unknown function; 
dimensionless unknown function; 
dimensionless unknown function; 
mean flow velocity (cm/set); 
dimensionless velocity distribution 
of concentric pipes with annular 
space (annulus) ; 

6. - rM2 - f.1); 

Neumann function ; 
axial co-ordinate; 
= Z/L; 
heat transfer coefficient (kcal/m2h 
“C) ; 
thickness of thermal boundary 
layer (cm); 
Re . Pr . (D, - D,)/L; 
kinematic viscosity (cm”/sec) ; 
density (kgs2/cm4) ; 
stream function (cm”/sec); 
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The theoretical researches of laminar heat 
transfer of double pipes in hydrodynamic entry 
length and in thermal entry length are given. 

In the theoretical solutions, non-linear Vol- 
terra’s integral equation and Gauss’s method 
(with a high accuracy in the method of numerical 
integration) are used and it is shown that 
theoretical solutions coincide with experimental 
values very well. Moreover, theoretical calcula- 
tions of the length of hydrodynamic entry 
region and the thermal entry region of double 
pipes are described. 

2. THEORETICAL ANALYSIS OF VELOCITY 
DISTRIBUTION OF HYDRODYNAMIC ENTRY 

LENGTH 
Equations of motion in hydrodynamics: 
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(3) 
For simplification, omit the boundary condi- 

tions of (6) and (7) and equate the coefficient of 

Equation of continuity : 
parameter II from equations (15) and (17). and 
then we obtain the next relations. 

Boundary conditions of the concentric pipes with 
annular space : 

(CJrsn = 0 (5) 

(6) 

(7) 

(18) 

(19) 

t201 

(21) 

(Cd,=, = F,(r) 00) 

(C.Z>~=~ = h,(r). (11) 
To eliminate the term of pressure p from the 
equations (1) and (2), operate 

and use the stream function $. 

c =s! z 
r ar 

c, = _ 1 . g 
r 

To write in dimensionless form, put 

# = G(r, - r1)2 * + 

t7: mean velocity of flow (cm/see), x 
(t; - rl), z = Z/I., 

9 = 40 + A#1 + A”#2 -I- 

(h = parameter), 

a2 1 a 
F;; = Y&ii + .--. 

x + r,/(rp - rl) 8x 

(23) 

(24) 

= 

(25) 

(26) 

02) (27) 

(13) 
WI 

09) 

(14) &, #a, etc. take the same form as (24) to (29). 

(r - rl)i f,,(x) andf,(x) are respectively, the dimension- 
less velocity distributions in the inlet (z = 0) and 

(I 5, 
the exit (z = I), and are respectively the dimen- 
sionless forms of F,(r) and F,(r) by (12) and (14). 

E;(x, z) of (24) is the known function substi- 
tuted $0 of (18) to (23) for 4 in N(4) of (17). 

(30) 

and we obtain the next equations. 

v;v,z$h = A. ~(~) (17) 

N(#) all terms except V,ZV;#, when the terms of p 
are eliminated from equations (1) and (2). 

V$ = 0 (31) 

(32) 
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(33) 
- [x + rl/(rz - rJ]-2 . y1 and we can obtain the 
first approximation of y1 from the next equations. 

(34) 
v;y1 = 0 (44) 

(Y&=0 =f&) (45) 

(35) (y&=1 = Mx) (46) 

(YLO = 0 (47) 

(36) (Yl),=I = 0. (48) 

Next, put u = J”; J; yz . dz . dx, substitute into 
(37) (37) to (43), differentiate one time both sides 

(38) 
of (37) with respect to x and z respectively, for 
simplicity; omit the term of 

- Lx + rl/(~z - rdl-” . y2, 
(39) 

and we can obtain the first approximation 
of yz from the next equations. 

(40) v;y2 = 0 (49) 

(41) 
(Y2)2=0 = fo(x) (50) 

(Y2>z=1 = 3.flw (51) 

(42) (Y2)5=0 = 0 (52) 

(Y‘Jz=, = 0. (53) 

(43) Substitute y1 and y2 into (12), (14) and (30), and 

Put u = J: y1 . dx and substitute in (31) to (36). 
we obtain the next equation as the first approxi- 

Differentiate once both sides of (31) with 
mation of Cz/G which satisfies boundary con- 

respect to x, and for simplicity, omit the term of 
ditions completely in the place closest to the wall 
of the inner pipe. 

CZ (1 + z> -=-_- ____ 
B Ix + rl/(r2 - rl>l 

m 

c 2 * Uo(x, As> 

s-=1 

i&h ks LW2 - rdl [ [r2/(r2 - rl)12 (Ug {k, [r2/(r2 - rl)ll)2 - L-r= 
(Ui{ks [rl/(r2 - 21 I)“] 

x {sinh k, [L/(r2 - r,)] (1 - z) . j;So(t) . U,(t, s)t . dt 

+ 4 sinh k, Wl(r, - r-,)1 z J; f&> . U,(t, S>t . dt} 

uo(x, s) = JoMx + rl/(r2 - rdl> Yo{kb + rll(r2 - rl)l> -____ 
Jo{k rll(r2 - rl> 1 Yolks rlk2 - rd 1 

k, is a root of the next equation. 

J,,{kr;Tz-}. Yo(k $$} = Yo 

(54) 

(55) 

(56) 
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3. AN EXAMPLE OF NUMERICAL CALCULATION 
OF DIST~UTION OF VELOCITY IN THE HYDRO- 

DYNAMIC ENTRY LENGTH 

In the numerical calculation of velocity distri- 
bution in the hydrodynamic entry length from 
{54), we must give fo(t) of the inlet velocity 
distribution andf,(t) of the velocity distribution 
of steady flow in the down stream passed over 
the hydrodynamic entry length and fully 
developed. 

The inlet velocity distribution is generally 
F,(r) of the function of radius as (lo), and con- 
sidered to be the distribution of a rectangle with 
corners slightly rounded. When we represent 
f&l) in this curve, we must use the elliptic 
functions of the first and second kind, and there- 
fore, here, for simplicity, .&(t) is treated as the 
uniform distribution, that is to say, 

Therefore 

Sow = (t + 1,9 ,;I. 
In the next, velocity distribution of steady flow 
in the down stream fully developed is shown by 
the next equation. 

(Cz/a)z=, = 2 . w&r). (59) 

Therefore 

FIG. 

0 0.25 0.50 0.75 I.00 

1. Velocity distribution in hydrodynamic entry 
length of double pipes. 

therefore, this equation does not satisfy the 
boundary conditions at x = 0 and x L= 1 only. 
but it is found to be (CZ/K&,, z=l = 0 from (54) 
which is a more accurate solution than (62), and 
so (62) becomes an approximate equation which 
is very convenient for the calculation of velocity 
distribution at the arbitrary points except for 
x = 0 and x = 1 only, i.e. the velocity of x = 0 

[- Hr2/rl - l)t + I 1” + 1 + ((r2/rl)* - 1 }/loge r2/rI x log, &Jr1 - l)t 4 11.1 
j-(f) = 2 ~_._~_____..._. __.__._ _~ __-- 

(rzirlP + 1 - Rrz/ylY - f )/log, rzlrl 

x 
t 
t+_-!L * 

1 W) 
r, - tl,, 

To simplify (54), take the first term of sinh and and x == 1 give respectively the velocity (~0) on 
substitute fo(t) and &(t) mentioned above, and the surface of inner and outer pipe-walls. 
we obtain the next equation as the approximate In the case of r,/r, = d,/d, = 55 mm/35 mm = 
equation for the numerical calculation. I.571428 in (62) and (61), an example with the 

” + (1 - z”) + (z + z2) . w&c). 

given value of z is shown by Fig. 1. In Fig. 1, the 

-z 
(62) velocity distribution at the vicinity of the inlet 

is nearly uniform, but the velocity distribution 
This equation is the case taken only the first down stream (in the direction of the outlet) 

term of sinh and considered simply like (59), and becomes parabolical and is not symmetrical with 
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respect to the centre (x = O-5) of the annulus; 
the velocity at the side of the inner pipe (x = 0) 
is larger than the velocity at the side of the outer 
pipe (x = 1). 

The velocity distribution of hydrodynamic 
entry length of double pipes is a complicated 
function of rz/rl ratio of radius and of radial and 
axial direction; by (54) or (62) velocity of 
arbitrary point is also calculable in the case of 
the ratio of the radius r2/r1 given arbitrarily. 

4. AN EXAMPLE OF NUMERICAL CALCULATION 
OF PRESSURE DROP 

Integrate the pressure drop [I] 

(63) 

and write in dimensionless form. In Fig. 2 

0 1 

‘\i 
-0.2 _~ __~ 

I 1 \. 
-0.4 -_ _ 

b, 
-0.6 ~__ x=0.5 

( ) 
rZ_55mm 

\, 
r, 35mm i\ 

i 

FIG. 2. Pressure drop in hydrodynamic entry length 
of double pipes. 

@Jr1 = 55 mm/35 mm, x = O-5), z is abscissa, 
and the ordinate is 

-(P - P,J~/P. 6-2 - rdv* x 2/& 

where Re = G . 2(r, - r,)/v, p. = pressure at 
inlet (kg/cm2). 

Then, put w = Cz/G and substitute (62) for w 
and we obtain (64). 

+ w(J(z=o.5) x (z + .z2 - z3 - 24) I 

_ + {W,(,=,.,)12 . &z2 + z3 + 42”) J 
We can find from (64) that the pressure drop in 
the hydrodynamic entry length is shown by the 
biquadratic equation of z. 

5. Lv: HYDRODYNAMIC ENTRY LENGTH 

By the above-mentioned, the velocity distri- 
bution and the pressure drop in the hydro- 
dynamic entry length are obtained in the dimen- 
sionless forms, and so, next, the hydrodynamic 
entry length must be determined. 

In (l), (2), (4), assume C, m 0 simply, put 
w = CzlG and we obtain the next equations in 
the dimensionless form from (2). 

a+ 1 aw 
-- + _- 
ax2 x + rlI(rZ - rJ ax 

+ (“.I$)’ c!Y$ = qx, z) (65) 

(W)& = 0 (66) 
(w)z=l = 0 (67) 

(w)z=, =f(x) (68) 

(aw/az),,, = 0 (69) 

(put C, % 0 in the equation of continuity) 

F(x, z) = the term of pressure drop = 

1 ap (r2 - rd2 Re r2-r1 aw, _- 
paz v.~ =- 2 L - i--) w1- (70) 6Z 

(x) in (68) is the inlet velocity in the dimension- 
less form. 

If we assume 4x, z) to be substituted (62) for 
w1 of (70) approximately, we can treat 4x, z) as 
a known function. 

By the boundary conditions (66) and (67), 
introduce the finite Hankel transform [2] to 
equation (65) and put 
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Ham = 4, ~okf(-41 = # 
and we obtain the next equations. 

(du/dz),,, = 0 (74) 

k, is a root of the next transcendental equation. 

Jo(k,(&j]- Yo{ks($&j] 

- Jo {k, (cFT, \ . Y, /kS ( TLi2-<j ] = 0. (75) 

If we ipply Laplack transform to (72) by (73) and 
(74), we can find u by the inversion theorem. 

u = $C cash k, ,;-, z + ; 
2 1 

&; 
S 2 1 

s 

z 

o +(5) sinh k, $; (z - 5) . d5. (76) 

By the inversion theorem of the finite Hankel 
transform, the velocity distribution w(x, z) is 
found in the next equation. 

In (77), w(x, z = 1) in the case of z = 1 is the 
velocity distribution in the end of the hydro- 
dynamic entry length. 

To find L/(r, - rl) from the condition that 
IV(X, z = 1) must to be equal to 2w,(x), the 
steady velocity distribution in the down stream 
fully developed, if we apply the finite Hankel 
transform to 2 . wO(x) and next, by the inversion 
theorem, expand 2w,(x) by Jo and Y,, we obtain 
an equation from (61) and (77). 

In that equation, L/(r, - rl) is contained as an 
unknown number and so, from the relation, if 
we find L/(r2 - rl), L = L.v the length of the 
hydrodynamic entry length can be determined. 
From this, it is found that L/(r, - rl) is a func- 
tion of Reynolds number Re and the ratio of 
radius r2/rl. 

Therefore, by the numerical solution of 
Graeffe’s method as the method of solution 
of equation of higher order about L in the case 
of giving Re, r2 and rl, it is possible to find L 
more accurately, but here, the next approximate 
calculation is performed simply. 

(i) The case of smalE Re 
We appiy Simpson’s 5 rule to the approxi- 

mate calculation of definite integral f”,-z”(l;) . d< 
with respect to 5 in (77) and next, in the same 
way, we apply also Simpson’s 4 rule to the 
calculation of j;(x) . dx with respect to x in 
(77) and, neglecting the little terms. we obtain 
the next formulae. 

L 
-_- = 

r2 - r1 2 k’ - Iog, z/(A +&P - 1) ), (78) 
.* 

s = 1 
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2 * wob=o.5) 
(79) 

L/(r, - rI) = 0.250150 (first term). (82) 
A=------ 

1 - Re/(6 * k) . w~LH,.~)’ 
When 

The limit of application of (78) is shown in the r,/r, = 1.2, .?J(rz - rI) = 

next equation. 0.2489664 (first term). (83) 

El - Rel(6 * k,) . w~(~=~.~)> 01. (80) Next, when r,/r, = 55/33 = 1.571428, calcu- 

(ii) Tire case of large Re 
late to the third term (s = 3) and we obtain 

(We can know the standard of the variation of L/(r, - YJ = 0*4098550 (to s = 3). (84) 
Re by equation (80).) 

Calculate exactly J: d5 with respect to 5 of (77) 
by the formula of integration, apply Simpson’s 

(ii) The case of large Re ~~a~~u~ated~~~ equation 
(81)) 

+ rule to J; dx with respect to x and, neglecting When rz/rl = 55133 = 1.571428, calculate to 
the little terms, we obtain the next formula. the third term (s = 3) and we obtain 

L m 1 
~ I- Re. wo(z=o.5) 

c 
(81) 

L,l(rz - rl) = 0.1039973 . Re. (85) 

r2 - r1 
p. 

s 
S=l 

When r,/r, = 1.2, calculate to the third term 

From (78) and (81), we can find that L(=Lr) 
(s = 3) and we obtain 

the length of the hydrodynamic entry length is L/(rz - rl) = 0.1035215 . Re. WI 
the function of Reynolds number Re and ratio 
of radius r,/r,. Equations (84) and (85) are shown by Fig. 3 

in log scale taking Re as abscissa. By these 

6. AN EXAMPLE OF NUMERICAL CALCULATION 
examples of numerical calculation, the difference 

OF (L= Lv) THE HYDRODYNAMIC ENTRY 
of the values of equations (82) and (83) is about 

LENGTH 04011 and the difference of the coefficients of 

(if Re = 10 
Re in equations (85) and (86) is 0*00047. 

When r&, = 55135 = l-571428, we obtain 
Within the limits of radius ratio 

the next from (78). (1.01 < re/rl < 1.6) 

IO ?A 100 XQ 1000 

Re 

FIG. 3. Relation of the length of hydrodynamic entry length and Re. 



248 KATSUHISA MURAKAWA 

the influence of radius ratio rZ/rl is small and the 
influence of Re is large, as Fig. 3. 

7. HEAT TRANSFER OF HYDRODYNAMIC ENTRY 
LENGTH 

To find the approximate solution simply by 
the theory of boundary layer, put 

t = (T - J-,)I(T,,, - T@rn), 

x = (1. - r;)/(rp - Yl), 

z = Z/L, 

u2 = Re . Pr . (D, - D,)/L 

and we obtain the next energy equation of the 
boundary layer. 

wfx, z) . t(x, z) . dx = 

From (62), 

w(x, z) fi 

(1 - z”) + (z + :“> . we(x) -h 1 + z . we(x). 

(When z * 0.) 

Put 

fo(z) = temperature distribution of the surface 
of inner pipe. 

Substitute w and t mentioned above for (87), 
and we are able to solve reducing to non-linear 
Volterra’s integral equation. 

The first approximation in the case of con- 
stant temperature of inner pipe wall is 

The Nusselt number of the inner pipe in this case 
is the next. 

Nu, = 
al . (D, - 4) 

4 

- 2 MWx),=o . dz & (qliz . al,2 A 

j;fo(z).dz 3 2- 
e 0.8165. u;.“. (89) 

Gauss’s method is used with high accuracy in 
the numerical integration. Therefore by equation 
(89), we can calculate simply the Nusselt number 
of laminar flow through hydrodynamic entry 
length in the case of constant temperature of 
inner pipe wall. 

In the next, when we consider the arbitrary 
temperature distribution,f,(z) of inner pipe wall, 
in the similar way, we can obtain the next 
equation. 

(90) 

In Fig. 4 (both log scale), the experimental 
results [3] of water heated from the inner pipe 
(mark 0 shows the data of vertical type, height 
is 3 m ; mark x shows the data of horizontal 
type, length is 5 m) are shown, in the case of 
laminar flow only except for the influence of 
free convection. 

IO 

5 

_ 3 

i? 
2 

I.0 2 3 10 20. 30 50 IO0 

FIG. 4. Heat transfer of hydrodynamic entry length. 

Moreover, the solid line in Fig. 4 shows the 
results calculated by (89). We can observe that 
theoretical results coincide with experimental 
results very well. 

8. L~F: THE THERMAL ENTRY LENGTH 

To find LT by the purely theoretical calcula- 
tions, applying theory of boundary layer, as the 
temperature distribution in the thermal boun- 
dary layer of thermal entry length, put 

t =fo(z) . (4x3 - 3 . T&x + l), 

and as the velocity distribution 2 . w,(x), put 
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From the energy equation of the boundary layer 

; J l at - .2. w,(x).dx = - 
0 az (91) 

we obtain the next relation (92), 

&/(rZ - rl) = Lvl(rz - rI) + z . L/(r, - r,) (92) 

where LT is the thermal entry length and LV is 
the hydrodynamic (or velocity) entry length. 

Lv/(r, - rJ = Re . wo(x = O-5) g l/k;. 
S=l 

In general case to find z from (Pl), if we give 
fo(z) as the polynomial of higher order of z, we 
can solve algebraic equation of higher order of z 
by the numerical method of solution of Graeffe’s 
method, but here, to find simply by the experi- 
mental results of water heated from the inner 
pipe, put 

fo(z) 2 - 0.7167~~ + 1.26832 + 0.045. 

The results of one example in this case are 
shown by the next value of z. 

2 = z(v‘J * o2 x w~(~=~.~) x 0.069444 

+ OGB482 + [ (vz . wo(z=o.51 x 0.~87332 

+ 0.011127 I2 + (O-062788 - oz 

x w~(~=~.~, x 0.12289}]1’2. (93) 

From (93), we can understand that z(vJ is the 
function of wo, i.e. rz/uI = D2/Dl = diameter 
ratio and cr, = Re , Pr . (I& - &)/I,. 

As we can calculate LT, the thermal entry 
length in the case of water from equation (92) 
and (93), in Fig. 5 (in both log scale), the results 
of theoretical calculation in the case of water 
heated from the inner pipe are shown by the 
relations of Lr/(rz - rJ and Lv](rz - rl) versus 
Re. 

We can understand that .&, the thermal entry 
length of laminar flow only is fairly long. LT and 
Lv are the results of theoretical calculations 
only. The influence of Pr upon LT and the 

R 

Re 

FIG. 5. An example of numerical calculation of LT 
and Lv. 

thermal entry length calculable by (91) and for 
example if we calculate the case of air it is known 
that LT is shorter than the case of water, and 
these agree with common sense. 

9. HEAT TRANSXXR OF THE THBRhUL ENTRY 
LENGTH 

Put 

for temperature distribution passed over the 
hydrodynamic entry length and put 

v(x) * 2 . we(x) fi 8 . wo(g=w5) . (x - x3) 
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for velocity distribution and substitute the Nu, = 
energy equation of boundary layer 

I 

2i[%. ~“,,+~.~,/18]}li~ J$ (l/~~‘~),f,(z) . dz 

and put 

6, 3 (--.----I = u- r2 - r1 

If we reduce to non-linear Volterra’s integral 
equation and use the method of numerical 
integration by Gauss’s method with high 
accuracy, the result of constant temperature of 
inner pipe wall (the first approximation) in the 
case of large Pr of water and oil etc. is as 
follows. 

Nu, =923{wo(x = @5)]ilii. 0;,3 + 6!,i . g;!z (94) 

From (94), we can understand that the Nusselt 
number Nu, is the function of ujo, i.e. r2/rl = 
D,lD, = diameter ratio and a2 = Re . Pr . (D, - 

D,YL. 
The theoretical result calculated by (94) is 

shown by the solid line of Fig. 6. The experi- 
mental results [3] of laminar heat transfer only 
of water heated from inner pipe, neglecting the 
influence of free convection, is shown by Fig. 6 

I.0 2 3 5 ,o 100 

,72 

FIG. 6. Heat transfer of thermal entry length. 

(in both log scales). We can understand that the 
experimental results coincide with the theo- 
retical result. 

In the next, if we consider f,(z), the tempera- 
ture distribution of the inner pipe wall, in the 
same way, we obtain the next equation. 

10. CONCLUSION 

The author deduced (54) the velocity distribu- 
tion of the hydrodynamic entry length of 
double pipes with annular space (annulus) which 
satisfies the boundary conditions of inner pipe 
wall, inlet and outlet (the end of the length of 
hydrodynamic entry length). 

If we consider uniform velocity distribution 
at the inlet, we can use (61) and (62) as the 
approximate formulae. As the results of examples 
of numerical calculations, the velocity distribu- 
tions near the inlet are almost uniform; but the 
velocity distributions near the down stream are 
parabolic, and not symmetrical with respect to 
the centre of the clearance of double pipes 
(annuli), but a bit larger at the inner pipe side of 
double pipes. 

The pressure drop in the hydrodynamic entry 
length as in (64) is shown by the biquadratic 
equation of z (the distance from the inlet). 

The determination of the hydrodynamic 
entry length is a very important and difficult 
problem: the author’s solution, introduces 
the finite Hankel transform. According to 
Sneddon, the finite Hankel transform is the 
quickest and easiest solution in comparison 
with the other methods of Laplace transform 
and L2-transform etc. The finite Hankel trans- 
form appears to be a very useful, convenient 
new method in the boundary value problems. 
treating especially circular rods and pipes, in 
heat conduction, heat transfer, hydrodynamics. 
elasticity and vibration etc. 

When we calculate the hydrodynamic entry 
length, giving radius ratio r2/rl and Reynolds 
number Re, we can find the accurate value for 
any size, by solving the algebraic equation of 
high order by the method of numerical solution. 
for example, by the Graeffe’s method etc., and 
we can also find it simply from equations (78) 
and (81). The hydrodynamic entry length is 
shown by the function of Reynolds number Re 
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and radius ratio r&,, and by the examples of 
numerical calculations, it is found that the 
influence of Reynolds number Re is larger than 
the influence of radius ratio t-,/r,. 

The author analysed theoretically the velocity 
distribution of the hydrodynamic entry length of 
double pipes with annular space (annulus), 
pressure drop and hydrodynamic entry length, 
from equations and hydrodynamics, and also 
showed the examples of numerical calculations. 
Giving dimensions arbitrarily, we can find the 
necessary values by the calculations mentioned 
above. 

In the industrial heat exchangers, there are 
many cases where heat transfer begins instantly 
at the entrances of double pipes and the tem- 
perature distributes over the walls of double 
pipes. In these cases, the author accomplished 
the theoretical calculations at the heat transfer 
of hydrodynamic and thermal entry length. It 

became clear that the results of theoretical cal- 
culations coincide with the experimental results 
very well. 

In the theoretical solutions, non-linear Vol- 
terra’s integral equation and Gauss’s method 
with a high accuracy, in the method of numerical 
integration, are used. In industry, there are many 
cases of heat transfer of both hydrodynamic 
entry length and a part of thermal entry length 
passed over hydrodynamic entry length, but 
research in this case being sparse, the author 
also accomplished the research in this case. 

REFERENCES 

1. S. GOLDSTEIN, Modern Developments in FIrrid Dyna- 
mics, Vol. 1, p. 305. Oxford University Press, Oxford 
(1938). 

2. SNEDDON, Fourier Transforms, p. 85 (1951). 
3. K. MURAKAWA, Heat transfer in entry length of double 

pipes. Trans. Japan Sot. Mech. Engrs, 25, No. 156, 
793-797 (1959). 


