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Abstract—The velocity distribution, the pressure drop, and the length of the hydrodynamic entry
length of the pipes with annular space (annulus) are found theoretically by the hydrodynamics, Bessel
functions and the finite Hankel transform, and the examples of numerical calculations are also shown.

The theoretical researches of laminar heat transfer of double pipes in hydrodynamic entry length and
in thermal entry length are accomplished. In the theoretical solutions, non-linear Volterra’s integral
equation and Gauss’ method with a high accuracy in the method of numerical integration, are used and
it is described that theoretical solutions coincide with experiments very well. Moreover, theoretical
calculations of length of hydrodynamic entry region and thermal entry region of double pipes are

described.

Résumé—La théorie hydrodynamique permet, a 'aide des fonctions de Bessel et de la transformation
de Hankel, le calcul de la distribution des vitesses, la chute de pression et la longueur d’entrée hydro-
dynamique des conduites annulaires (tubes concentriques). Des exemples numériques sont donnés.
Des recherches théoriques sont faites sur la transmission de chaleur laminaire le long des distances
d’entrées hydrodynamique et thermique des conduites doubles. Pour obtenir des solutions théoriques,
on a recours A I’équation intégrale non-linéaire de Volterra et & la méthode de Gauss avec intégrations
numériques trés précises. Les résultats théoriques coincident trés bien avec les résultats expérimen-
taux. De plus, les calculs théoriques des longueurs d’entrées hydrodynamique et thermique des tubes
doubles sont décrits.

Zusammenfassung—M it Hilfe von Gleichungen der Hydrodynamik, von Bessel-Funktionen und der
endlichen Hankeltransformation werden Geschwindigkeitsverteilung, Druckabfall und Linge des
hydrodynamischen Anlaufs bei Rohren mit ringférmigem Querschnitt (Ringraum) theoretisch
bestimmt und Beispiele der numerischen Berechnung angegeben. Die theoretische Erforschung der
hydrodynamischen und thermischen Anlaufstreckebei laminarem Wirmeiibergang in Doppelrohren
wird vervollstindigt. Die theoretischen Losungen beruhen auf der nichtlinearen Volterra-Integral-
gleichung und der Gauss-Methode mit ihrer hohen Genauigkeit fiir die numerische Integration und
zeigen sehr gute Ubereinstimmung mit den Versuchen. Weiterhin sind fiir Doppelrohre theoretische
Berechnungen der Linge des hydrodynamischen und thermischen Anlaufbereichs beschrieben.

AnHoramna—TeopeTHdecKN MeTOAAMM THAPORMHAMHKI, QyHRINeNl DBeccans m KOHEHHOIO
npeoGpaszoBanua XaHKejldA HalieHbl pacupesesienle CKOPOCTeil, aleHNe NABJIeHUA U JIIMHA
I'HAPONMHAMMYECKOT0 BXOJZHOTO Y4YAcTKA TPYO ¢ KoublieBhIM 2a3opoM. Ilpusemensl Tarswe
MpUMEPH YIICJIOBEIX PACYETOB.

BrinosnHeHs! TeopeTmyecKme WCCHeJOBAHMA TeINIOOOMEHA B JAMMHAPHOM IIOTOKE Hi
FUAPOJMHAMUYECKOM U TEePMHYECKOM BXOAHBIX yYacTKax Tpy6 C KOJbLEBHEIM 3asopoM. D
TeOpeTHYeCKUX MCCIIeJOBAHUAX MHCHOJNb30BANNCh HeJNHeliHble MHTerpajibHEE YpaBHEHMA
BoarTeppa u merox Paycca. Ilocuennuit npuMeHsICA ¢ BRICOKOH TOUYHOCTHIO IPH YHCIEHHOM
HHTerpUpoBanuK. TeopeTHYeckue PeIIeHUA XOPOMIO COIJIACYIOTCA C 3KCIEPUMEeHTAJbHBIMIL
JaHHBIMHM. ONHCAaHH TeOPEeTHYECKHEe PACYéTHl IJAMH FHAPOAMHAMUYECKOI0 U TEPpMUYECKOro

BXOJHHIX YYACTKOB Tpy0 ¢ KOJBLEBHIM 3a30pOM.

NOTATION D, = 2r,, inner diameter of outer pipe (cm);
thermal diffusivity (cm/sec); D, = 2r,, outer diameter of inner pipe (cm);
radial velocity (cm/sec); Fy(r), inlet velocity of entry length
axial velocity (cm/sec); (cm/sec);
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Fy(r),

fO(x)>
fl(‘x)7
fo(z)a

Jos
L,
Ly,

LT?

HEAT TRANSFER IN ENTRY

velocity of steady flow fully
developed in the end of entry
length (cm/sec);

dimensionless velocity in the inlet;
dimensionless velocity in the exit;
dimensionless temperature distri-
bution of the surface of inner pipe;
Bessel function;

heating length (cm);

length of hydrodynamic or velocity
entry length (cm);

thermal entry length (cm);

Nu = ay. (Dy — Dy)/Ay,

pO’
D,
Pr,

Nusselt number;

inlet pressure (kg/cm?);
pressure (kg/cm?);

v/a: Prandtl number;

Re = . (Dy — D))Jv,

Y
s
Iy,

Reynolds number;
radial co-ordinate;
outer radius of inner pipe (cm);
inner radius of outer pipe (cm);

t = (T — To)[(Twrm — Tugm),

Twlma

Tw2ms

dimensionless temperature distri-
bution;

mean temperature of the surface
of inner pipe wall (°C);

mean temperature of the surface
of the outer pipe wall (°C);

fluid temperature (°C);

inlet temperature of fluid (°C);
dimensionless unknown function;
dimensionless unknown function;
dimensionless unknown function;
mean flow velocity (cm/sec);
dimensionless velocity distribution
of concentric pipes with annular
space (annulus);

(r — r)f(rs — ry);

Neumann function;

axial co-ordinate;

=Z/L;

heat transfer coefficient (kcal/m2h
oc) ;

thickness of thermal boundary
layer (cm);

Re . Pr. (D, — D)/L;

kinematic viscosity (cm?/sec);
density (kgs?/cm?);

stream function (cm3/sec);
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A, parameter;

AL thermal conductivity (kcal/m-h
OC);

Z, variable.

1. INTRODUCTION

IN industrial heat exchangers and atomic
reactors, there are many cases where heat transfer
begins immediately at the entrance of double
pipes, and therefore research of heat transfer
in double pipes, in hydrodynamic entry length
and in thermal entry length, is necessary, but
at the moment there is little being done.

In the theoretical analysis of heat transfer
of the entry length in the pipes with annular
space, the velocity distribution, the pressure
drop, and the hydrodynamic entry length are
necessary factors, and therefore, the author
determines them theoretically by hydrodynamics,
Bessel functions and the finite Hankel trans-
forms, under the given conditions of wall sur-
face of the inner pipe and outer pipe and the
inlet and outlet; examples of numerical calcula-
tions are also shown.

The theoretical researches of laminar heat
transfer of double pipes in hydrodynamic entry
length and in thermal entry length are given.

In the theoretical solutions, non-linear Vol-
terra’s integral equation and Gauss’s method
(with a high accuracy in the method of numerical
integration) are used and it is shown that
theoretical solutions coincide with experimental
values very well. Moreover, theoretical calcula-
tions of the length of hydrodynamic entry
region and the thermal entry region of double
pipes are described.

2. THEORETICAL ANALYSIS OF VELOCITY
DISTRIBUTION OF HYDRODYNAMIC ENTRY

LENGTH
Equations of motion in hydrodynamics:
oC, oC, 1 op
Co TCoo 7=, %
G
r(va -G W
oCgz Cz 1 op .
Cr a‘r— CZ?Z'— ~—p 8?+VV CZ (2)
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&2 o &2 3
V‘?‘2+T?+az“2 ®
Equation of continuity:
1 o rCz
;50 G+ 57 =0 4

Boundary conditions of the concentric pipes with
annular space:

(Clrery =0 &)
(Clrory =0 ©
(Cz=0 =0 D
(Colyry =0 ®
(Cz)per, =0 )
(C2)zen = Folr) (10)
(CDz—r = F(r). (1n

To eliminate the term of pressure p from the
equations (1) and (2), operate

& 5 & .
P )-52(),

and use the stream function .

Lo

Cz= . (12)
1 ap
C,=— PR (13)
To write in dimensionless form, put
=Wy —r)?- ¢ (14)

w: mean velocity of flow (cm/sec), x = (r — ry)/

(r2 - rl)’ z :ZI/L
¢ =g+ Ay + Xy -+ (15)
(A = parameter),
v &2 1 )
0= x2+x+i1/(l2——r1) ox
g — Iy 2 82
+ ('-—zi) 7 (9
ViVid = A. N(¢$) 17

N(¢) all terms except VIV2, when the terms of p
are eliminated from equations (1) and (2).
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For simplification, omit the boundary condi-
tions of (6) and (7) and equate the coeflicient of
parameter A from equations (15) and (17). and
then we obtain the next relations.

ViVigo =0 (18)
(%?;S;f)z;fe(m 19)
(%)Zf fi(x) (20)
('Cg:’):} 0 @1
(6@@ 0 (22)
(852): 0 (23)
ViVig, = Fy(x, 2) 24)
(85"71)2 . (25)
(65;) zor 0 (26)
(a:;)f 0 (27)
@;) =0 (28)
(%9: (29)

&a, b3, etc. take the same form as (24) to (29).

Jfolx) and fi(x) are respectively, the dimension-
Iess velocity distributions in the inlet (z = 0) and
the exit (z = 1), and are respectively the dimen-
sionless forms of Fi(r) and Fi{(r) by (12) and (14).

Fi(x, z) of (24) is the known function substi-
tuted ¢, of (18) to (23) for ¢ in N(¢) of (17).

ov
and we obtain the next equations.
Vi =0 3D
'ou
(55), = £ (32)
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(5), =45 (33)
(5.0 o9
(&), o3
E R
Vi =0 @)
EIC I
e o
Gzl o @
e
(&), @)
(). o @)

Putu = {7 y, . dx and substitute in (31) to (36).
Differentiate once both sides of (31) with
respect to x, and for simplicity, omit the term of
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—[x + ry/(r; — r)]"% . y, and we can obtain the

first approximation of y, from the next equations.
Viy,; =0 44)

z—o = folx) (45)

(1z-1 = 2A() (46)

(Me=o =0 47

(Ve = 0. (48)

Next, put v = {* [* y,.dz. dx, substitute into
(37) to (43), differentiate one time both sides
of (37) with respect to x and z respectively, for
simplicity, omit the term of

=[x + rf(rs — r)]2 .y,

and we can obtain the first approximation
of y, from the next equations.

Vey: =0 49)
(V2)z=o = folx) (50)
(2dem1 = $41(x) (51
(Poe=o =0 (52)
(221 = 0. (33)

Substitute y, and y, into (12), (14) and (30), and
we obtain the next equation as the first approxi-
mation of Cz/w which satisfies boundary con-
ditions completely in the place closest to the wall
of the inner pipe.

Cz 4+2
W [x + ryf(ry — )]

0

2

s =1

x {sinh k, [L/(ry — r)] (1 — 2). [2fo(1) . Uot, S)t . dt

Uyx, §) ==

k is a root of the next equation.

2. Uyx, S)

sinh k [L/(ry — rp)] [["2/(”2 — r)F Uy ik, [ra/(ra — r)l})? — [rf(ry — r)R f (54)

(U(’,{ks[’l/(rz - 1)]})2] i

-+ 4sinh kg [Li(r, — r)l z [} A1) . Ugt, S)t . de} J

_Jolkslx + /(g — )]} _ Yolks[x + ry/(re — )1}
Tollkarf(rs — 1)} Yole, ril(rs — 1)) ©3)
ry r

Yo{krz_rl}.Jo{krz_rl} (56)

r, n
J . ———— ==
o{k"2—rl} Yo{k ’2“"1}




244

3. AN EXAMPLE OF NUMERICAL CALCULATION
OF DISTRIBUTION OF VELOCITY IN THE HYDRO-
DYNAMIC ENTRY LENGTH

In the numerical calculation of velocity distri-
bution in the hydrodynamic entry length from
(54), we must give fo(t) of the inlet velocity
distribution and £,(z) of the velocity distribution
of steady flow in the down stream passed over
the hydrodynamic entry length and fully
developed.

The inlet velocity distribution is generally
Fy(ry of the function of radius as (10), and con-
sidered to be the distribution of a rectangle with
corners slightly rounded. When we represent
Folt) in this curve, we must use the elliptic
functions of the first and second kind, and there-
fore, here, for simplicity, fo(t) is treated as the

uniform distribution, that is to say,
(C2)zg =W (57

Therefore

wo=(i+" )

In the next, velocity distribution of steady flow
in the down stream fully developed is shown by
the next equation.

(Cz/)z=1 = 2 . wo(x). (59)

Therefore

AO =2w0i0) x (12

W) ©
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FiG. 1. Velocity distribution in hydrodynamic entry
length of double pipes.

therefore, this equation does not satisfy the
boundary conditions at x = 0 and x = | only,
but it is found to be (Cz/W),—g, .= = 0 from (54)
which is a more accurate solution than (62), and
so (62) becomes an approximate equation which
is very convenient for the calculation of velocity
distribution at the arbitrary points except for
x =0 and x = 1 only, i.e. the velocity of x = 0

[—{(ry/ry — D+ 12 + 1 + {(rofry)* — 1}/loge ryfry X loge {(rafry — Dt + 1}]

Al =2

<1+

(ro/ri* +1— {("2/"1)2 — 1}/loge ra/ry

ry )
ry —

(6

To simplify (54), take the first term of sinh and
substitute fo(¢) and f1(z) mentioned above, and
we obtain the next equation as the approximate
equation for the numerical calculation.

Ot ) w0,

w

(62)

This equation is the case taken only the first
term of sinh and considered simply like (59), and

and x == 1 give respectively the velocity (=0) on
the surface of inner and outer pipe-walls.

In the case of ry/r, = dy/d; = 55 mm/35 mm =
1-571428 in (62) and (61), an example with the
given value of z is shown by Fig. 1. In Fig. 1, the
velocity distribution at the vicinity of the inlet
is nearly uniform, but the velocity distribution
down stream (in the direction of the outlet)
becomes parabolical and is not symmetrical with
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respect to the centre (x = 0-5) of the annulus;
the velocity at the side of the inner pipe (x = 0)
is larger than the velocity at the side of the outer
pipe (x = 1).

The velocity distribution of hydrodynamic
entry length of double pipes is a complicated
function of ry/r, ratio of radius and of radial and
axial direction; by (54) or (62) velocity of
arbitrary point is also calculable in the case of
the ratio of the radius r,/r, given arbitrarily.

4. AN EXAMPLE OF NUMERICAL CALCULATION
OF PRESSURE DROP

Integrate the pressure drop [1]

1 op . HCz2)p=g-5
i (C2)omo-s X — 57— (63)

and write in dimensionless form. In Fig. 2

0 T
o |
AN
®,
ol i "\
| -04
= ’ e
(RIS | \
R
© L _oel— *=0-5 _ ey
KN rp_55mm TN
> v, 35mm \'
o
|
L -os —
l l
-0 ! | 1 : L !
[o] 0-2 04 o6 0-8 -0 2

F1G. 2. Pressure drop in hydrodynamic entry length
of double pipes.

(ry/ry = 55 mm/35 mm, x = 0-5), z is abscissa,
and the ordinate is

—(p — po)l/p . (rz — r1)vw X 2/Re,

where Re = w . 2(r, — ry)/v, p, = pressure at
inlet (kg/cm?).

Then, put w = Cz/ and substitute (62) for w
and we obtain (64).

245
)1 (rz__L’). 3 — ]
—'(P—Po; v.w Re
z dw
w.——| .dza —z24 44 .
L( dz)x:o-s ! r-(64)

+ Wo(z=q.5) X (Z 4+ 22— 23 — 24)
Tt Woe=0.0))% - (32 + 2* + 329 J

We can find from (64) that the pressure drop in
the hydrodynamic entry length is shown by the
biquadratic equation of z.

5. Ly: HYDRODYNAMIC ENTRY LENGTH

By the above-mentioned, the velocity distri-
bution and the pressure drop in the hydro-
dynamic entry length are obtained in the dimen-
sionless forms, and so, next, the hydrodynamic
entry length must be determined.

In (1), (2), 4), assume C, &~ 0 simply, put
w = Cz/Ww and we obtain the next equations in
the dimensionless form from (2).

82w 1 ow
ox? + X+ rf(ry —ry) ox
ry— ra\?® &Ew
() FoFwa 69
(W)y—o =0 (66)
W)om =0 (67)
W)zmo = f () (68)
(6w/0z);-g =0 (69)
(put C, &~ 0 in the equation of continuity)
F(x, z) = the term of pressure drop =
1 op(ra—r)*  Refr,—n ow,
AR B ——7(*r)wlaz (70)

(x) in (68) is the inlet velocity in the dimension-
less form.

If we assume F(x, z) to be substituted (62) for
w, of (70) approximately, we can treat F(x, z) as
a known function.

By the boundary conditions (66) and (67),
introduce the finite Hankel transform [2] to
equation (65) and put
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1/ x r i 3
Hylw]l =u = ja (x —+ }2i "1) W
J’ [ N ¥y | [ ¥y
{J0<Lks (‘(x T fp — ”1)} o ikﬁ re — ’1} . (1)
A PR T
']0 Lks o — rlJ
o))
.Y()Lks(x-i-rg__r1 dx ]
HlFl=4¢, Hylf()]l=4¢

and we obtain the next equations.

—ku+ ("2 *1’})2 . jf‘: =dé(z) (72)

L
(W)omp = ¥ (73)
(du/dz),.q =0 (74

k. is a root of the next transcendental equation.

Jo {ks (;2—2 71)} - Yo {k‘ (r:ljvf;)}

[ 2\ { o]

1 P

If we apply Laplace transform to (72) by (73) and
(74), we can find u by the inversion theorem,

L 1 L
u = . cosh &, PR + k=T

—ry

JZ $(L) sinh k, ;—_—1‘1—7 (z—290.d¢.  (76)
0 2 1

By the inversion theorem of the finite Hankel
transform, the velocity distribution w(x, z) is
found in the next equation.

KATSUHISA MURAKAWA

In (77), w(x, z = 1) in the case of z = | is the
velocity distribution in the end of the hydro-
dynamic entry length.

To find L/(r, — r,) from the condition that
w(x, z = 1) must to be equal to 2wy(x), the
steady velocity distribution in the down stream
fully developed, if we apply the finite Hankel
transform to 2 . wy(x) and next, by the inversion
theorem, expand 2wy(x) by J, and Y, we obtain
an equation from (61) and (77).

In that equation, L/(r, — r,) is contained as an
unknown number and so, from the relation, if
we find L/(r, — r;), L = Ly the length of the
hydrodynamic entry length can be determined.
From this, it is found that L/(r, — ry) is a func-
tion of Reynolds number Re and the ratio of
radius ry/fr;.

Therefore, by the numerical solution of
Graeffe’s method as the method of solution
of equation of higher order about L in the case
of giving Re, r, and ry, it is possible to find L
more accurately, but here, the next approximate
calculation is performed simply.

(i) The case of small Re

We apply Simpson’s } rule to the approxi-
mate calculation of definite integral {2=%{). d¢
with respect to £ in (77) and next, in the same
way, we apply also Simpson’s 1 rule to the
calculation of [}(x).dx with respect to x in
(77) and, neglecting the little terms, we obtain
the next formulae.

o

= D o VA SV = ) (9

o — Iy

§=1

w 2. k. T3tk nf(rs — 1)} (Je{ks [x + riflra — 1)1} . Yolksraf(ry — 1)}

w(x, z) = N

— Jofksrof(ry — 1)} . Yolks [x + rif(rs — r)1})

A/; Jg{ks”?/(rz_’z}} —Jﬁ{ks rf(ry — 1)}

s=1

X [COSh ks Li(ro—rpz f; [x 4 rif(ry — r)1 S (Uolks [x + rif(r, — 1)1} . Yolkorof(ry — 1)}
— Jotky raf(rs — r)} . Yoiks [x + ryf(ry — rp]}) dx
+ (kg . L(ra — ry) [5{Jilx + rof(ra — 1)1 F(x, §) . (Jo{ks [x + rif(ry — r)]}

Yolks raf(r, — 1)}

— Joiksraf(rs — r)} - Yoike [x + ry/(ry — r)1}) - dx} . sinh ko Lf(ry — 1) (2 — ) . dC}

amn
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_ 2. Wolz=0.5)
1~ Re/(6 - ks) . wi}(m=0-5)‘

The limit of application of (78) is shown in the
next equation.

[1 — Re/(6- k). Wota=o.5> 0].

(ii) The case of large Re

(We can know the standard of the variation of
Re by equation (80).)

Calculate exactly f1d{ with respect to { of (77)
by the formula of integration, apply Simpson’s
3 rule to [} dx with respect to x and, neglecting
the little terms, we obtain the next formula.

fes)

1
= Re . Wo(s=0.5) Z s

s=1

4 79

(80)

L

rp—n

@n

From (78) and (81), we can find that L{=Ly)
the length of the hydrodynamic entry length is
the function of Reynolds number Re and ratio
of radius ry/ry.

6. AN EXAMPLE OF NUMERICAL CALCULATION
OF (L= Ly) THE HYDRODYNAMIC ENTRY
LENGTH

(i) Re = 10
When ry/r, = 55/35 = 1-571428, we obtain
the next from (78).
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L/(ry — ry) == 0-250150 (first term).
When

rofry =12, Li(ry—r) =
0:2489664 (first term). (83)

Next, when ry/r; = 55/33 = 1-571428, calcu-
late to the third term (s = 3) and we obtain

L)(r, — r;) = 0-4098550 (to s = 3).

(82)

(84)

(ii) The case of large Re {calculated from equation

(81))
When r,/r, = 55/33 = 1-571428, calculate to
the third term (s = 3) and we obtain

L/(r, — 1)) = 0-1039973 . Re.  (85)

When ry/r; = 1-2, calculate to the third term
(s = 3) and we obtain

Li(rs — r;) = 0-1035215. Re.  (86)

Equations (84) and (85) are shown by Fig. 3
in log scale taking Re as abscissa. By these
examples of numerical calculation, the difference
of the values of equations (82) and (83) is about
0-0011 and the difference of the coefficients of
Re in equations (85) and (86) is 0-00047.

Within the limits of radius ratio

(101 < ryfry; < 146)

100 s
50
2rp_B5mm .
2 35mm =571428
20
iy 10 /
5 /‘
2 //
10
Q0 20 50 00 200 300 1000
Re

Fic. 3. Relation of the length of hydrodynamic entry length and Re.
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the influence of radius ratio r,/r, is small and the
influence of Re is large, as Fig. 3.

7. HEAT TRANSFER OF HYDRODYNAMIC ENTRY
LENGTH

To find the approximate solution simply by
the theory of boundary layer, put

t =T — To)/(Turm —
x = — r)/r, — ry),
z=Z[L,
oy, = Re . Pr.(D, — D))/L

w2 m) s

and we obtain the next energy equation of the
boundary layer.

o, @ [oM027D
YR J w(x, ). t(x, z) . dx =
¢

o (g)zzo' (87)
From (62),
wx, z) ==
(A —2 4 (4 2). we(x) =1 4 2. wy(x).
(When z=0.)
Put

=1 -2 (2 )7

8}__ —2
* (?‘ "1) P

fo(z2) = temperature distribution of the surface
of inner pipe.

Substitute w and ¢ mentioned above for (87),
and we are able to solve reducing to non-linear
Volterra’s integral equation.

The first approximation in the case of con-
stant temperature of inner pipe wall is

6, . 8y

(r;— 1) (o)V?

The Nusselt number of the inner pipe in this case
is the next.

. Z172, (88)

Nuy = %L (BE:J?I) _
1
_ 2 .[é(at/ax)wzo M 95 -~ (%)1/2 . Gé/z e

(Y fo2) . dz

= 0-8165. %% (89)
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Gauss’s method is used with high accuracy in
the numerical integration. Therefore by equation
(89), we can calculate simply the Nusselt number
of laminar flow through hydrodynamic entry
length in the case of constant temperature of
inner pipe wall.

In the next, when we consider the arbitrary
temperature distribution fy(z) of inner pipe wall,
in the similar way, we can obtain the next
equation.

,
Nuy==cl’2 (2)V2. [1 4+ 1 {afo(z) )

1/2
f(;z=0.5) \?_,(220.5}
(90)

In Fig. 4 (both log scale), the experimental
results [3] of water heated from the inner pipe
(mark O shows the data of vertical type, height
is 3 m; mark X shows the data of horizontal
type, length is 5 m) are shown, in the case of
laminar flow only except for the influence of
free convection.

0
/1
5F- 9&(" 1 -
5 ° S
o< R
2 /;}{g 4]

x X

! & 1"
ps [
/o:l/ L
2 3 :

3 10

100

FiG. 4. Heat transfer of hydrodynamic entry length.

Moreover, the solid line in Fig. 4 shows the
results calculated by (89). We can observe that
theoretical results coincide with experimental
results very well.

8. Lry: THE THERMAL ENTRY LENGTH

To find L7 by the purely theoretical calcula-
tions, applying theory of boundary layer, as the
temperature distribution in the thermal boun-
dary layer of thermal entry length, put

t=fo2) . 3x* = 3. dx + 1),

and as the velocity distribution 2 . wy(x), put
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[—{0y/ry — Dx + 132 + 1 + {(ryfry)® — 1}/loge (ra/ry) X loge {(ra/ry— 1) x + 1}]

2. wex) =2

(ro/r? + 1 — {{rsfr1)® — 1}/loge ry/r;

From the energy equation of the boundary layer

o, [t ot o ot
"{j 5.2.w0(x).dx——(—5;)m=o

0

on

we obtain the next relation (92),
Leftry—r) =Ly[/(ry—r) +z. Li(r,— 1)) (92)

where Ly is the thermal entry length and Ly is
the hydrodynamic (or velocity) entry length.

Ly/(ry — ry) = Re . we(x = 0-5) £ 1/k2.
s=1

In general case to find z from (91), if we give
Jfo(2) as the polynomial of higher order of z, we
can solve algebraic equation of higher order of z
by the numerical method of solution of Graeffe's
method, but here, to find simply by the experi-
mental results of water heated from the inner

pipe, put
folz) = — 0-716722 + 12683z - 0-045.

The results of one example in this case are
shown by the next value of z.

Z = 2{0y) =0y X Wo(z=g.5 X 0069444
+ 0-88482 + [{o, . Woz=0.5 X 000087332
+ 0011127} -+ {0-062788 — o,
X Wote=g.5p X 0-12289 1112, 93)

From (93), we can understand that z{(c,) is the
function of wy, i.e. ry/r; = Dy/D, = diameter
ratio and o, = Re . Pr. (D, — D))/L.

As we can calculate Lp, the thermal entry
length in the case of water from equation (92)
and (93), in Fig. 5 (in both log scale), the results
of theoretical calculation in the case of water
heated from the inner pipe are shown by the
relations of Lp/(r, — ry) and Ly/(r, — r,) versus
Re.

We can understand that Ly, the thermal entry
length of laminar flow only is fairly long. Ly and
Ly are the results of theoretical calculations
only. The influence of Pr upon Lr and the
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F1G. 5. An example of numerical calculation of Ly
and Ly.

thermal entry length calculable by (91) and for
example if we calculate the case of air it is known
that Ly is shorter than the case of water, and
these agree with common sense.

9. HEAT TRANSFER OF THE THERMAL ENTRY
LENGTH

- . X
ro—1

St -2
+ ("1 - "2) ) xz},

for temperature distribution passed over the
hydrodynamic entry length and put

Put

tﬁﬁ,(z){l«-«Z(

v(x) =2 . wo(x) =8 . Wy(z=p.5 - (x — xP)
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for velocity distribution and substitute the
energy equation of boundary layer

o, [0T2=T1[ ot ot
’4 JO [az x 2. wo(x)] .dx = — (6})",:0

and put
(:25)
— e =u.
Fo—1

If we reduce to non-linear Volterra’s integral
equation and use the method of numerical
integration by Gauss’s method with high
accuracy, the result of constant temperature of
inner pipe wall (the first approximation) in the
case of large Pr of water and oil etc. is as
follows.
2 13 1

Nul :w{wo(x = 05)} . U;"a + éllé . 0';'/2 (94)

From (94), we can understand that the Nusselt
number Nu, is the function of w,, i.e. ryfr; =
D,/D, = diameter ratio and 6, = Re . Pr. (D, —
Dy)/L.

The theoretical result calculated by (94) is
shown by the solid line of Fig. 6. The experi-
mental results [3] of laminar heat transfer only
of water heated from inner pipe, neglecting the
influence of free convection, is shown by Fig. 6
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F1G. 6. Heat transfer of thermal entry length.

(in both log scales). We can understand that the
experimental results coincide with the theo-
retical result.

In the next, if we consider fy(z), the tempera-
ture distribution of the inner pipe wall, in the
same way, we obtain the next equation.

KATSUHISA MURAKAWA

Nu, =
2o - Wo=o-0/ 18131 J3 (1/21%) fo(2) . d=

8 fo2) . dz
oy LI afo@} } :
+ 62 [1 +f0(z:0'5) { oz 5=0°5 . (95)

10. CONCLUSION

The author deduced (54) the velocity distribu-
tion of the hydrodynamic entry length of
double pipes with annular space (annulus) which
satisfies the boundary conditions of inner pipe
wall, inlet and outlet (the end of the length of
hydrodynamic entry length).

If we consider uniform velocity distribution
at the inlet, we can use (61) and (62) as the
approximate formulae. As the results of examples
of numerical calculations, the velocity distribu-
tions near the inlet are almost uniform: but the
velocity distributions near the down stream are
parabolic, and not symmetrical with respect to
the centre of the clearance of double pipes
(annuli), but a bit larger at the inner pipe side of
double pipes.

The pressure drop in the hydrodynamic entry
length as in (64) is shown by the biquadratic
equation of z (the distance from the inlet).

The determination of the hydrodynamic
entry length is a very important and difficult
problem; the author’s solution, introduces
the finite Hankel transform. According to
Sneddon, the finite Hankel transform is the
quickest and easiest solution in comparison
with the other methods of Laplace transform
and L%transform etc. The finite Hankel trans-
form appears to be a very useful, convenient
new method in the boundary value problems.
treating especially circular rods and pipes, in
heat conduction, heat transfer, hydrodynamics,
elasticity and vibration etc.

When we calculate the hydrodynamic entry
length, giving radius ratio ry/r; and Reynolds
number Re, we can find the accurate value for
any size, by solving the algebraic equation of
high order by the method of numerical solution.
for example, by the Graeffe’s method etc., and
we can also find it simply from equations (78)
and (81). The hydrodynamic entry length is
shown by the function of Reynolds number Re
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and radius ratio ry/r;, and by the examples of
numerical calculations, it is found that the
influence of Reynolds number Re is larger than
the influence of radius ratio ry/r;.

The author analysed theoretically the velocity
distribution of the hydrodynamic entry length of
double pipes with annular space (annulus),
pressure drop and hydrodynamic entry length,
from equations and hydrodynamics, and also
showed the examples of numerical calculations.
Giving dimensions arbitrarily, we can find the
necessary values by the calculations mentioned
above.

In the industrial heat exchangers, there are
many cases where heat transfer begins instantly
at the entrances of double pipes and the tem-
perature distributes over the walls of double
pipes. In these cases, the author accomplished
the theoretical calculations at the heat transfer
of hydrodynamic and thermal entry length. It
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became clear that the results of theoretical cal-
culations coincide with the experimental results
very well.

In the theoretical solutions, non-linear Vol-
terra’s integral equation and Gauss’s method
with a high accuracy, in the method of numerical
integration, are used. In industry, there are many
cases of heat transfer of both hydrodynamic
entry length and a part of thermal entry length
passed over hydrodynamic entry length, but
research in this case being sparse, the author
also accomplished the research in this case.
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